Conserved Peptide Upstream Open Reading Frames are Associated with Regulatory Genes in Angiosperms
نویسندگان
چکیده
Upstream open reading frames (uORFs) are common in eukaryotic transcripts, but those that encode conserved peptides occur in less than 1% of transcripts. The peptides encoded by three plant conserved peptide uORF (CPuORF) families are known to control translation of the downstream ORF in response to a small signal molecule (sucrose, polyamines, and phosphocholine). In flowering plants, transcription factors are statistically over-represented among genes that possess CPuORFs, and in general it appeared that many CPuORF genes also had other regulatory functions, though the significance of this suggestion was uncertain (Hayden and Jorgensen, 2007). Five years later the literature provides much more information on the functions of many CPuORF genes. Here we reassess the functions of 27 known CPuORF gene families and find that 22 of these families play a variety of different regulatory roles, from transcriptional control to protein turnover, and from small signal molecules to signal transduction kinases. Clearly then, there is indeed a strong association of CPuORFs with regulatory genes. In addition, 16 of these families play key roles in a variety of different biological processes. Most strikingly, the core sucrose response network includes three different CPuORFs, creating the potential for sophisticated balancing of the network in response to three different molecular inputs. We propose that the function of most CPuORFs is to modulate translation of a downstream major ORF (mORF) in response to a signal molecule recognized by the conserved peptide and that because the mORFs of CPuORF genes generally encode regulatory proteins, many of them centrally important in the biology of plants, CPuORFs play key roles in balancing such regulatory networks.
منابع مشابه
Identification of novel Arabidopsis thaliana upstream open reading frames that control expression of the main coding sequences in a peptide sequence-dependent manner
Upstream open reading frames (uORFs) are often found in the 5'-leader regions of eukaryotic mRNAs and can negatively modulate the translational efficiency of the downstream main ORF. Although the effects of most uORFs are thought to be independent of their encoded peptide sequences, certain uORFs control translation of the main ORF in a peptide sequence-dependent manner. For genome-wide identif...
متن کاملSucrose control of translation mediated by an upstream open reading frame-encoded peptide.
Regulation of gene expression through translational control is common in many organisms. The Arabidopsis (Arabidopsis thaliana) transcription factor bZIP11 is translational repressed in response to sucrose (Suc), resulting in Suc-regulated changes in amino acid metabolism. The 5' leader of the bZIP11 mRNA harbors several upstream open reading frames (uORFs), of which the second uORF is well con...
متن کاملIdentification of Arabidopsis thaliana upstream open reading frames encoding peptide sequences that cause ribosomal arrest
Specific sequences of certain nascent peptides cause programmed ribosomal arrest during mRNA translation to control gene expression. In eukaryotes, most known regulatory arrest peptides are encoded by upstream open reading frames (uORFs) present in the 5'-untranslated region of mRNAs. However, to date, a limited number of eukaryotic uORFs encoding arrest peptides have been reported. Here, we se...
متن کاملThe genes encoding endonuclease VIII and endonuclease III in Escherichia coli are transcribed as the terminal genes in operons.
Escherichia coli endonuclease VIII and endo-nuclease III are oxidative base excision repair DNA glycosylases that remove oxidized pyrimidines from DNA. The genes encoding these proteins, nei and nth, are both co-transcribed as the terminal genes in operons. nei is the terminal gene in an operon with four open reading frames that encode proteins of unknown function. This operon has two confirmed...
متن کاملTranslational control of SCL-isoform expression in hematopoietic lineage choice.
We investigated the translational regulation of SCL protein expression and its role in hematopoietic lineage choice. We show that the expression of different SCL protein isoforms is regulated by signal transduction pathways that modulate translation initiation factor (eIF) function. A conserved small upstream open reading frame (uORF) in SCL transcripts acts as a cis-regulatory element for isof...
متن کامل